

Gradient-less Federated Gradient Boosting Trees with Learnable Learning Rates

Paper ID: 10

Problem

- Horizontal federated XGBoost relies on the sharing of gradients because finding the optimal split condition of a single tree depends on the order of the data samples.
- The sharing of gradients causes:
- 1) Per-node level communication frequency
- 2) Serious privacy concerns

Intuition 1: A fixed learning rate is too weak

Contributions

- We propose a novel privacy-preserving framework, **FedXGBIIr**, a **fed**erated XGBoost with learnable learning rates in the horizontal setting which do not rely on the sharing of gradients and hessians.
- Our framework disentangles the per-node communication frequency when level training a federated XGBoost.
- The total communication overhead of our framework is independent of the dataset size and is significantly lower (by factors ranging from 25x to 700x) than previous methods.
- We show that FedXGBIIr is interpretable with carefully framed reasoning and analysis.

Chenyang Ma, Xinchi Qiu, Daniel J. Beutel, Nicholas D. Lane Computer Science and Technology, University of Cambridge, United Kingdom

Proposed Approach

Local client's dataset may be heterogenous Each tree makes different "amount of mistakes"

Intuition 2: Moving towards the global optima

(a) Tree Ensembles Aggregation

Proposed Approach cont.

Applying a weighted sum on the diverse prediction results given by all XGBoost tree ensembles can lead to a more accurate final prediction value

Table 3: Compari- son of communica- tion overhead (MB).				
Dataset	FedXGBllr	SimFL [16]		
a9a	6.0	150.4 (25×)		
cod-rna	6.0	249.3 (42×)		
ijcnn1	6.0	218.4 (36×)		
real-sim	6.0	323.1 (54×)		
HIGGS	6.0	4216 (703×)		
SUSY	6.0	4136 (689×)		

(b) One-layer 1D CNN (trained by FedAvg)

Experiments

Table 1: Summary of datasets

Dataset	Task Type	Data No.	Dimension	Size
a9a	classification	32,561	123	16MB
cod-rna	classification	59,535	8	2.1MB
ijcnn1	classification	49,990	22	4.4MB
real-sim	classification	72,309	20,958	6.1GB
HIGGS	classification	1,000,000	28	112MB
SUSY	classification	1,000,000	18	72MB
abalone	regression	4,177	8	253KB
cpusmall	regression	8,192	12	684KB
space_ga	regression	3,167	6	553KB
YearPredictionMSD	regression	515,345	90	615MB

 Table 2: Quantitative results of FedXGBllr compared
to SimFL and centralized baseline - Accuracy \uparrow (for the first six classification datasets), MSE \downarrow (for the last four regression datasets).

Dataset	FedXGBllr			SimFL [16]	Centralized
	2 clients	5 clients	10 clients	2 clients	Baseline
a9a	85.1	85.1	84.7	84.9	84.9
cod-rna	97.0	96.5	95.8	94.0	93.9
ijcnn1	96.3	96.0	95.3	96.4	96.3
real-sim	93.4	93.8	92.7	92.9	93.5
HIGGS	71.5	70.9	70.3	70.7	70.7
SUSY	82.5	81.7	81.2	80.4	80.0
abalone	3.6	4.4	4.9	-	1.3
cpusmall	8.0	8.5	9.5	-	6.7
space_ga	0.024	0.033	0.034	-	0.024
YearPredictionMSD	80.3	82.7	91.6	-	80.5

Ablation Studies

Table 4: Model interpretability. $k = kernel_size$, s =stride, $n = client_tree_num = 500/client_num$.

Dataset	1-layer 1D CNN (k = s = n)	1-layer 1D CNN (k = 3, s = 1)	2-layer FCNN
.9a	85.1	83.9	82.8
od-rna	96.5	96.3	94.7
jenn1	96.0	95.1	92.2
eal-sim	93.8	93.2	91.6
HIGGS	70.9	70.5	67.9
USY	81.7	81.3	77.5
balone	4.4	4.4	5.8
pusmall	8.5	9.2	12.6
pace_ga	0.033	0.034	0.044
earPredictionMSD	82.7	87.5	117.7