

DYNAMIC STASHING QUANTIZATION FOR EFFICIENT TRANSFORMER TRAINING

Guo Yang, Daniel Lo, Robert Mullins, Yiren Zhao

Content List

- 1. Motivation: Roofline Model, Quantization and Stashing
- 2. Introduction: Transformer Structure, Data Type
- 3. Methodology: BFP Quantization, Stashing (static vs. dynamic)
- 4. Results
- 5. Limitation
- 6. Summary

1. Motivation: Roofline Model

- Roofline Model [1]:
 - Operational Intensity: performance of computing core over bandwidth of memory: OI := FLOPs per sec/ Memory Access per sec
 - For a specific hardware, the optimal working operational intensity is I_{max}.

[1] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

1. Motivation: LLM Training is Memory-Bound

• We ran a similar analysis to Ivanov et al. [1]:

OPT-1.3B Model:

- 47.93% latency: Attention layers. Memory-bound. (the matrix multiplications only takes around 66% of the latency in a single attention module.)
- 32.20% latency: FC layer. Compute-bound.
- 19.87% latency: Activation & Norm layer. Memory-bound.

[1] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li and Torsten Hoefler. 2020. Data movement is all you need: A case study on optimizing Transformers. In Proceedings of the 4 th MLSys Conference, San Jose, CA, USA, 2021.

1. Motivation: Quantization & Stashing

- Transformer model falls at memory-bound Attainable Performance area when trained on modern GPUs.
- Quantization reduces the size of data transmitted between memory and computing core during training.
- Dynamic Stashing Quantization: dynamically quantize the intermediate results between forward and backward passes for a significant reduction of the DRAM traffic

2. Introduction: Transformer Structure

- A Transformer is built up with N stacks of encoders and decoders (Figure 1) [1].
- Encoders and decoders are both composed of three distinct layers:
 - Feed-Forward Network Layer
 - Multi-Head Attention Layer
 - Add & Norm Layer

IVERSITYOE

• FFN Layer and Self-Attention layer consumes most computational resources.

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

2. Introduction: Data Type

- Data Type: INT, FP16, FP32, BFloat16, Block FP (BFP)
- Fixed-Point Quantization: Map Floating-Point values to Fixed-Point values
- BFP Quantization: Quantize the Floating-Point values in groups based on the largest value in every group (Bounding-Box)

3. Methodology: BFP Quantization (Figure [1])

[1] Chhabra, A., & Iyer, R. (1999). A Block Floating Point Implementation on the TMS 320 C 54 x DSP.

3. Methodology: Stashing

• Stashing:

• Static vs. dynamic

4. Results

Dataset and Model	Method	Precision Setup	Acc / BLEU (Δ)	Arith Ops (\downarrow)	DRAM R/W (\downarrow)
IWSLT2017 DE-EN Transformer (6-layer)	Floating-point	[32, 32, 32, 32]	35.22	-	-
	Fixed-point	[32, 32, 32, 32]	34.47(-0.75)	1.00 imes	1.00 imes
	Fixed-point	[16, 16, 16, 16]	32.59(-2.63)	0.25 imes	0.50 imes
	Block FP	[32, 32, 32, 32]	34.56(-0.66)	0.56 imes	$1.13 \times$
	Block FP	[16, 16, 16, 16]	34.30(-0.92)	0.18 imes	$0.63 \times$
	Stashing (Fixed)	[16, 4, 4, 16]	25.50(-9.72)	0.13 imes	0.31 imes
	Stashing (BFP)	[16, 4, 4, 16]	34.78(-0.44)	0.10 imes	0.45 imes
	DSQ (BFP)	_	34.81(-0.41)	$0.012 \times$	0.20 imes
GLUE MNLI RoBERTa-base	Floating-point	[32, 32, 32, 32]	87.6	-	-
	Fixed-point	[32, 32, 32, 32]	87.9(+0.3)	1.00 imes	1.00 imes
	Fixed-point	[16, 16, 16, 16]	87.9(+0.3)	$0.25 \times$	0.50 imes
	Block FP	[32, 32, 32, 32]	87.8(+0.2)	0.56 imes	1.13 imes
	Block FP	[16, 16, 16, 16]	87.8(+0.2)	0.18 imes	$0.63 \times$
	Stashing (Fixed)	[16, 4, 4, 16]	82.8(-4.8)	0.13 imes	0.32 imes
	Stashing (BFP)	[16, 4, 4, 16]	87.8(+0.2)	$0.10 \times$	$0.45 \times$
	DSQ (BFP)	-	87.8(+0.2)	$0.043 \times$	0.26 imes
GLUE QNLI RoBERTa-base	Floating-point	[32, 32, 32, 32]	92.8	-	-
	Fixed-point	[32, 32, 32, 32]	92.6(-0.2)	1.00 imes	1.00 imes
	Fixed-point	[16, 16, 16, 16]	92.6(-0.2)	$0.25 \times$	0.50 imes
	Block FP	[32, 32, 32, 32]	92.7(-0.1)	0.56 imes	$1.13 \times$
	Block FP	[16, 16, 16, 16]	92.5(-0.3)	0.18 imes	$0.63 \times$
	Stashing (Fixed)	[16, 4, 4, 16]	89.5(-3.3)	0.13 imes	$0.32 \times$
	Stashing (BFP)	[16, 4, 4, 16]	92.6(-0.2)	$0.10 \times$	$0.45 \times$
	DSQ (BFP)	_	92.7(-0.1)	$0.043 \times$	$0.26 \times$

5. Limitation

- Scheduling precision: We follow a setup similar to that proposed by Honig et al. [1].
 We introduce the parameter N, and found that setting it to N=5 is sufficient for all test scenarios.
- Explore other schedules...

[1] Robert Hönig, Yiren Zhao, and Robert Mullins. 2022. Dadaquant: Doubly-adaptive quantization for communication-efficient federated learning. In International Conference on Machine Learning, pages 8852–8866. PMLR

6. Summary

- We propose Dynamic Stashing Quantization (DSQ) for LLM training
- DSQ reduces DRAM traffic by quantizing intermediate results between the forward and backward passes generated during training.
- DSQ keeps most of the model accuracy.
- We demonstrate the effectiveness of DSQ by showing how it can reduce both the computation cost and DRAM bandwidth requirement on machine translation and LLM fine-tuning tasks.

Thank you for listening!

Reference:

[1] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

[2] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li and Torsten Hoefler. 2020. Data movement is all you need: A case study on optimizing Transformers. In Proceedings of the 4 th MLSys Conference, San Jose, CA, USA, 2021.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

[4] Chhabra, A., & Iyer, R. (1999). A Block Floating Point Implementation on the TMS 320 C 54 x DSP.

[5] Robert Hönig, Yiren Zhao, and Robert Mullins. 2022. Dadaquant: Doubly-adaptive quantization for communication-efficient federated learning. In International Conference on Machine Learning, pages 8852–8866. PMLR

