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1. Motivation: Roofline Model

® Roofline Model [1]:
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[1] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance model fo
multicore architectures. Communications of the ACM, 52(4):65-76, 2009.




1. Motivation: LLM Training is Memory-Bound

® \We ran a similar analysis to Ivanov et al. [1]:

OPT-1.3B Model:

O 47.93% latency: Attention layers. Memory-bound. (the matrix multiplications only takes
around 66% of the latency in a single attention module.)

O 32.20% latency: FC layer. Compute-bound.

O 19.87% latency: Activation & Norm layer. Memory-bound.
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1. Motivation: Quantization & Stashing

98 Transformer
98 Quantized Transformer
® Transformer model falls at memory-bound , Atirable % Stashing-based Transformer
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2. Introduction: Transformer Structure

® A Transformer is built up with N stacks of
encoders and decoders (Figure 1) [1].

® Encoders and decoders are both composed of
three distinct layers:
o Feed-Forward Network Layer
o Multi-Head Attention Layer
o Add & Norm Layer

® FFN Layer and Self-Attention layer consumes
most computational resources.
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Figure 1: The Transformer - model architecture.
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2. Introduction: Data Type

® Data Type: INT, FP16, FP32, BFloat16, Block FP (BFP)
® Fixed-Point Quantization: Map Floating-Point values to Fixed-Point values

® BFP Quantization: Quantize the Floating-Point values in groups based on the
largest value in every group (Bounding-Box)
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3. Methodology: BFP Quantization (Figure [1])

Mantissa

All these numbers share
0 1 1 0 1 0 0 0 0 one common exponent

Exponent

o
—
—
o
o
—
o
o
o

0 1 0 1

o o
5 .
) o
i -
- o
o o
o o
o o
o o
\\,

UNIVERSITY OF [1] Chhabra, A., & lyer, R. (1999). A Block Floating Point Implementation on the TMS 320 C 54 x DSP,
CAMBRIDGE



3. Methodology: Stashing

® Stashing:
Forward Pass Backward Pass
=% DRAM Reads and Writes
GEMM: General Matrix Multiply
T — g — dzii — dz
f GEMM — 74 ~‘ GEMM — dwz GEMM — dwl
Wi l w2 g l T
T ‘ 'h T a3 T

® Static vs. dynamic
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4. Results

Dataset and Model Method Precision Setup Acc/BLEU (A) Arith Ops (]) DRAMR/W ({)
Floating-point [32, 32,32, 32] 35.22 - -
Fixed-point [32,32,32,32] 34.47 (—0.75) 1.00x 1.00x
Fixed-point [16, 16, 16, 16]  32.59 (—2.63) 0.25x% 0.50x
%ﬁﬁ?g&g (1)61_31‘251;) Block FP [32,32,32,32]  34.56 (—0.66) 0.56x 1.13x
Block FP [16, 16, 16, 16]  34.30 (—0.92) 0.18x 0.63x
Stashing (Fixed) [16, 4, 4, 16] 25.50 (—9.72) 0.13x 0.31x
Stashing (BFP) [16, 4, 4, 16] 34.78 (—0.44) 0.10x 0.45x
DSQ (BFP) — 34.81 (—0.41) 0.012x 0.20x
Floating-point [32, 32, 32, 32] 87.6 - -
Fixed-point [32, 32, 32, 32] 87.9 (+0.3) 1.00x 1.00x
Fixed-point [16, 16, 16, 16] 87.9 (+0.3) 0.25x% 0.50x
GLUE MNLI Block FP [32, 32, 32, 32] 87.8 (+0.2) 0.56 x 1.13x%
RoBERTa-base Block FP [16, 16, 16, 16] 87.8 (+0.2) 0.18x 0.63x
Stashing (Fixed) [16, 4, 4, 16] 82.8 (—4.8) 0.13x 0.32x
Stashing (BFP) [16, 4, 4, 16] 87.8 (+0.2) 0.10x 0.45x
DSQ (BFP) — 87.8 (+0.2) 0.043 % 0.26x
Floating-point [32, 32, 32, 32] 92.8 - -
Fixed-point [32, 32, 32, 32] 92.6 (—0.2) 1.00x 1.00x
Fixed-point [16, 16, 16, 16] 92.6 (—0.2) 0.25x 0.50%
GLUE QNLI Block FP [32, 32, 32, 32] 92.7 (—0.1) 0.56 % 1.13x
RoBERTa-base Block FP [16, 16, 16, 16] 92.5 (—0.3) 0.18x% 0.63x
Stashing (Fixed) [16, 4, 4, 16] 89.5 (—3.3) 0.13x 0.32x
Stashing (BFP) [16, 4, 4, 16] 92.6 (—0.2) 0.10x 0.45x%
DSQ (BFP) - 92.7 (—0.1) 0.043x 0.26
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5. Limitation

® Scheduling precision: We follow a setup similar to that proposed by Honig et al. [1].
We introduce the parameter N, and found that setting it to N=5 is sufficient for all test
scenarios.

® Explore other schedules...
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6. Summary

® \We propose Dynamic Stashing Quantization (DSQ) for LLM training

® DSQ reduces DRAM traffic by quantizing intermediate results between the forward and
backward passes generated during training.

® DSQ keeps most of the model accuracy.

® \We demonstrate the effectiveness of DSQ by showing how it can reduce both the
computation cost and DRAM bandwidth requirement on machine translation and LLM
fine-tuning tasks.
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Thank you for listening!
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