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Training Speech Recognition Task on the Edge

• Voice is biometric, spurring the privacy challenge for 
speech recognition training. 

• Cost: data communication and data protection 

• Risk: policies and legal restrictions
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Solution: Distributed training on user devices  
                                            without pooling the data to a central server.



Uniform Model in FL
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• In classical federated learning the server distributes a uniform model to all clients. 

• Pros: simple and effective model aggregation methods such as averaging parameters 

• Cons: 

• Stragglers: clients with lower computation resources, unable to complete model training in time 

• Effects of system heterogeneity: performance degradation, slows training, unfairness.

Global Model



Heterogeneous Models in FL
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• The server distributes custom size (heterogeneous) models to each device: 

• Pros: client model size is chosen based on the local system characteristics (personalised). 

• Cons: structural barriers for knowledge aggregation 

• Solution: Student-Teacher learning with knowledge distillation



Proposed Method—FedKAD

• KD-based FL 

• A public dataset to support S-T learning 

• Teacher: 

• logits from clients 

• Aggregated on server 

• Students: 

• Client models/global model

Teacher

Averaged logits

Server

Clients

StudentsAveraged logits
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Proposed Method—FedKAD

• Feature maps on the client 

• To update model classifier in KD training 

• Locally averaged per label (prototype feature map)

Feature maps  
(Averaged per label)

Reduced communication cost with local aggregation 
based on our evaluation

Aggregated

Classifier update in KD training
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Evaluation—Experiment Setup

• Dataset: Google Speech Command transformed to Mel Spectrogram 

• Client size: 20  

• Hetero. Models: WideResnet with varying depths 

• Non-IID client data: Dirichlet distribution (alpha to control data heterogeneity)
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Evaluation—Baselines

• Uniform model (model fusion) 

• FedAvg 

• FedProx

Some clients are assumed 
constant stragglers

• Heterogenous models (KD training) 

• FedMD

Assumed 100% client participation
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Evaluation—Test Accuracy/Communication Cost

• Test accuracy (%) 

• FedKAD improves FedMD 

• FedKAD outperforms FedAvg/
FedProx with 40% client participation 

• Communication cost (MB/per acc.%) 

• FedKDA reduces com. cost by half 
from FedAvg/FedProx 

•  FedKAD and FedMD are on par
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Problems of KD-based method

• Additional computation/memory cost:  

• A public dataset (or data generator). 

• KD training.

10



Summary/Takeaways

• We adapt client model size to ensure wider participation of clients to FL rounds. 

• We exploit feature maps to boost KD-based heterogeneous FL. 

• Uniform models methods (FedAvg, FedProx) need high client participation to outperform our FedKAD, 
which is not realistic for computing constrained devices. 

• Our FedKAD surpasses another heterogeneous models method, FedMD, in both accuracy and 
communication efficiency.

Feature maps Thank you!
hshi21@sheffield.ac.uk

FedKAD
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