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ﬂ Definition of Sparsity

Fine-grained structured sparsity must be assured,

but low additional hardware costs. sparsity,, =

Highest sparsrty rates, highest hardware costs.
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Different sparsity rate definitions exist:

ﬂ Reflects model size
c Simple to use

Does not allow latency or throughput estimation
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e Reflects computational complexity

ﬂ Allows latency and throughput estimation if system is
compute-bound

No consideration of memory accesses and memory bandwidth, i.e.,
inaccurate if system is memory-bound

No consideration of potential overheads (e.g., sparsity encoding)

Sparsity rate that reflects number of operations is used

gStructured and Unstructured Sparsity
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Figure 1: Single Shot multibox Detector (SSD) architecture with VGG feature extractor [1].
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Figure 2: Sparsity rate vs. latency using unstructured pruning.
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Almost linear latency reduction up to 85% sparsity,,,.
Limited latency reduction for higher sparsity rates.

Experimental Settings

= Evaluated models:

= Two SSD object detection (small: 5.4M parameters; large: 22M

parameters) models with 7 classes and 1280x720 input

resolution (see Figure 1).

* Pruning method: lterative, global, L1-norm-based pruning approach

= Small model pruned to 70% sparsity,, without significant

accuracy degradation.

= Models are quantized to 8 bit (activations & coefficients) using the

Ambarella tools

= [atencies are measured on the Ambarella CV22 [2].

Detailed comparison of

unstructured pruned models

Model small | large
GMACSy 41.14 | 163.76
sparsity,, 80.0% | 95.0%

GMACS ) yneq | 823 8.19
latency [ms] | 35.03 84.51
mem,, [MB] 3.08 3.41

[ mem, [MB] 12.72 21.08 ]
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Limited latency reduction,
because system is I/O bound.
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Combining different sparsity patterns
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Figure 3: Sparsity rate vs. latency for large SSD models with
unstructured sparsity, structured sparsity and combined

sparsity.

Ratio of structured and unstructured sparsity a trade-off
between latency and accuracy in high-sparsity regimes

Conclusion

= Sparsity rate definition matters; pruned weights contribute differently to number of required

operations and latency.

= Linear speedup can be observed for low to medium unstructured sparsity rates on Ambarella

CV22, a dedicated Al accelerators with coefficient sparsity support

= High unstructured sparsity rates lead to an overhead, making the baseline model a crucial factor
= Structured sparsity modifies the model architecture and, hence, is not affected by this overhead

= A combination of both, unstructured and structured sparsity can be used to achieve low latency,

high throughout enabled by high sparsity rates
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