
1. Dataset design
Challenges: 
• Precise labeling, start/end of an event?
• Build realistic dataset from noisy sensor data.

Solutions: 
• Define early/late accept of frames (softer labels)
• Data augmentation (e.g., background noise, shifts, scaling)

•Our use case: 
• Neural networks on ultra-low power microcontrollers for 

real-time, always-on event classification,
• Continuous frame-by-frame processing: 1 input data → 1 

output decision.

Problem:
• What are the specific challenges and solutions to design and 

deploy tinyML solutions ?
• How to apply it our frame-based event classification?

3. Hardware deployment
Challenges: 
• Scarcity of suitable library for model conversion/inference on low-

power embedded hardware.
• Heterogeneous hardware landscape

Solutions: 
• Frameworks to quantize and deploy deep learning models on MCUs:
•TensorFlow Lite Micro (TFLM) [3]: Interpreter-based → wide 
hardware support, good performance, missing some operations
(e.g., GRU, Conv1D, …), difficult to customize and debug.
•NNoM [4]: C code generation, lightweight, wide hardware support, 
smaller community and adoption, unstable performance results.

Our solution [5]: 
•Create our own tinyMLOps framework: bugfix, added missing 
supported operations or options (GRU, Conv1D), …
•C code generation for wide support, CMSIS-NN support, lightweight.

4. Evaluation
Challenges: 
• Finding and measuring meaningful metrics that reflects on-device 

user experience before release
• Ambiguous errors in frame-based events: early/late detection

Solutions: 
• Create custom metrics and tune the optimal model output 

threshold (softmax/sigmoid input) and plot the results.
• User-define early/late acceptance margin of frame, based on the 

application: Responsive but lower quality inference vs slower with 
higher quality inference?
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Introduction

TinyML: Emerging field at the intersection of Machine Learning 

(ML) and Internet of Things (IoT).

• Why? Enable intelligent processing of real-time data and close 
to the source, offers privacy, low-cost systems, new 
opportunities, …

• Applications: Gesture recognition, keyword spotting, anomaly 
detection, …

• Challenges: High power footprint algorithm on ultra-low 

power microcontrollers: ≤103 KB memory, 102 MHz clock, 1 mW
scale, early stage of the field → Lack of mature tools and 
practices.

• TinyMLOps: Subset of Machine Learning Operations 

(MLOps) focusing on best practices to deploy ML models on 
low-power embedded systems.
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Table 1: TinyMLOps solutions on an HAR 
dataset deployed on an Arm Cortex M-4 MCU.

Figure 3: Tuning model output threshold for custom metric FPR vs FNR/FCR and latency.

2. Model training, optimization
Challenges: 
• What model architectures for ultra-low power microcontrollers? 
• High power footprint in computation and size.

• Limited operations: Integer-only inference, no explicit division (≠ 2𝑛)
• Model has poor performance → Tune hyper-parameters or go back 

to dataset design.

Solutions: 
• Convolutional 1D GRU are polyvalent with good size-performance 

tradeoff for sequence classification [1]
• Model compression [2]: Pruning, knowledge distillation, low-rank 

matrix decomposition, weight sharing,
• Quantization [2]: Reduce parameter precision from 32-bits floating 

point to lower-bit integer (e.g., 8-bits), mandatory step.

Conclusion
TinyMLOps: unique set of challenges and solutions, non-linear process 
and nascent field.
Our tinyMLOps solution: Competitive results with existing solutions, but 
is more stable and lightweight, while keeping performance
Frame-based event classification: careful consideration on datasets and 
metrics for real-time inference on ultra-low power microcontrollers.
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