Toward Pattern-based Model Selection for
Cloud Resource Forecasting
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Resource Scaling: Choose Model with Highest Prediction Accuracy.

Overcommitment Policies: Choose Model that predicts Max value.

Problem Statement: Can we select a model based on the pattern of resource usage?
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1. Problem Space

Which model to select?
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} Example Use Cases
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Data Representations

Numeric: Time Series Data “as-is”
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3. Pattern-based Comparison

Comparison Metrics
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2. Proposed Approach
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Methodology: Run k-means to cluster the time
series of the tasks creating 1 cluster per job.
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Details of our ML Model Deployment

ML models can generalize across job tasks.
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is important to deliver high prediction accuracy.

1. Effective pattern-based model selection unlocks highly generalizable

and accurate model inference across tasks of a job. Ineffective selection

5. Main Insights

reveals significant loss in inference quality.

2. Pattern-based comparisons using distance-based metrics are effective .
for very similar timeseries, but break when patterns become slightly .
disimillar (e.g., time shifted), even with more sophisticated approaches .

(DTW, image-based). Opportunity for new contributions!

6. Future Directions

* Expand dataset to more

jobs,

tasks,

resources, and finer granularity across time windows.
* Explore more sophisticated ML-based pattern matching.
Use explainable Al to understand model generalizability.
Explore other forecasting models (ML, statistical).
Integrate pattern-based model selection in use case

e.g., resource autoscaler, overcomitment policy.
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