
Scalable High-Performance Architecture
for Evolving Recommender System

Ravi Kumar Singh 1 Mayank Mishra 1 Rekha Singhal 1

1TCS Research

Introduction and Motivation

Over time, customers develop different engage-

ment points with the business. As shown in Fig-

ure 1, an organization may use multiple models (

of varying levels of sophistication) in their recom-

mendation system with increased customer en-

gagement. This means the recommendation sys-

tems[2] of businesses evolve with the introduc-

tion of newer, more sophisticated models and the

removal of old models. Moreover, multiple recom-

mender models coexist at the same time.

Following are the technical debts associated with deploying multiple recommender models simultane-

ously.

Requirements: It can be offline or real-time for models.

Technology: Models can be ML-based, or others can be DL based.

Architecture: It can differ in on-prem or cloud-based models.

Data Features: Data features used during training and inference can differ.

Problem Definition: we re-architect an in-house recommender the system named RecServ, to create

HiServ (High-performance recommendation Serving), which employs multiple recommender models

and recommends items with low latency, offers high throughput and handles huge volumes of data

over time.

RECOMMENDER SYSTEM USE CASE

HiServ is a personalized1 recommendation system designed for a clothing retail website that caters

to almost 2 million known customers and covers over 4000 product categories. Categories have an

average of 100 products, ranging from 50 to 1000. The system uses customer browsing, purchase

history, and recently viewed products to personalize product listings.

Performance Requirements: the system demands an end-to-end latency requirement of 60ms,

with the end being the point where the request for recommendation is generated

Recommendation Architecture: The recommender system under discussion involved two

recommendation models, namely

LightFM model is an ML the based model uses customer features (age, gender, etc.), product features (price,

categories, etc.), and customer-product interaction features (buys, views, reviews, etc.) for learning Embeddings

for customers and products. This model performs dot product over the learned Customer Embeddings and

Product Embeddings and calculates the scores for every product corresponding to each category and customer.

NISER model[1] provides real-time session-based recommendations of products using a customer’s past clicks in

the current session(sequence of product clicks/views within a given time duration).

RECSERVTO HISERV

This section presents a detailed discussion of howwe rearchitected RecServ to HiServ, which supports

high throughput and low latency. In the given figure, we first discuss the real-time processing steps

R1 to R6, followed by the offline processing steps O1 to O3.

Processing steps in the overall arrangement of recommender models

Step Description

R1 the customer’s ongoing session sequence is converted to an adjacency matrix format using

product embeddings, which is then fed to the NISER model along with an asynchronous query

message sent from the web/app server.

R2 The Batch of customer sessions is fed to the Niser model to predict the next set of products

that the customer might be interested in.

R3 The product recommendation list corresponding to each input session is inferred by Niser

R4 the product list recommended by Lightfm is accessed from the cache when the asynchronous

query message is received from the web/app server.

R5 the recommendation lists of both Niser and Lightfm are merged to create the final recommen-

dation list of products

R6 Final recommendation list of products provided to the web/App server.

O1 Batch Preparation for LightFMmodel inference. The idea is to create batches of customers and

categories of products as 2D vectors of both customers and product embeddings become very

large.

O2 the Lightfm model generates scores for each customer-product pair using the dot product be-

tween their embeddings

O3 The generated offline recommendations for each customer-category tuple are stored to be

accessed later and then merged with real-time recommendations.

Challenges in Processing steps in HiServ

Step Challenges

R1 How many sessions to batch together and creation of batch waiting of enough requests to

accumulate?

R2 How fast the NISER model can provide inference?

R3 How best can we prepare the lists for merging with the recommendations list predicted by

Lightfm?

R4 How to arrange data in the cache and which cache technology to use?

R5 What kind of data format and Data structures do us to make the process of merging fast?

R6 How to cache them for future use?

O1 Create batches of customers and categories of products as 2D vectors of both customers and

product embeddings such that it should not become very large.

O2 Goal is to perform the dot product of such large embeddings quickly.

O3 How to put generated data in the cache?

R3: Processing of NISER Recommendations Un-optimized vs Optimized

The steps S1, S2, and S3 per-

formed by RecServ using product

IDs (string-based identification) are

replaced by faster Tensor-based

operations using product index

(integer-based identification)F1, F2

steps.

R5- Offline and real-time recommendation merging speedup

The steps employed in merging both RecServ and

HiServ are the same. The difference is that Rec-

Serv employs string-based identification (product

IDs)of products and uses data frame-based op-

erations, whereas, HiServ employs integer-based

identification(product index) of products and uses

NumPy arrays and Tensors. The recommended

products in offline and real-time lists are scored

positionally before merging.

O3- Storing offline recommendations

RecServ relied on RDBMS solely for read-

only purposes. Accessing the precomputed

recommendations using an API for each

customer-category tuple resulted in high la-

tency, taking hundreds of milliseconds (300
to 800 milliseconds). However, HiServ’s light

green box with a tick mark resolves this is-

sue by storing the product recommendation

list as a single record in a key-value store for

each customer.

EVALUATION

Using better techniques ensured that the performance of HiServ was much better than RecServ. Table

1 shows that latency per recommendation supported by HiServ is close to 65ms, which is roughly 23×
lesser than RecServ. The throughput of HiServ is close to 1500 requests per second.Batching plays an
essential role in the high performance achieved by HiServ.

Experimental Setup: The underlying hardware of a 16-core 64 GB VM where we performed experi-

ments has 16-core 64 GB VM.

Table 1. Latency and Throughput For HiServ vs RecServ

Recommender System Latency Throughput

RecServ 1500 ms 1 per sec

HiServ (batch size 100) 65 ms 1538 per sec

HiServ (batch size 50) 40 ms 1250 per sec

HiServ (batch size 10) 16 ms 625 per sec

HiServ (batch size 5) 11 ms 454 per sec

HiServ (batch size 1) 5.5 ms 181 per sec

Conclusions

People are using different recommendation models for recommendations that are evolving. Recom-

mendation models start degrading in performance due to technical debt. In this paper, we have looked

at our in-house case study of two mod- els, which are LightFM(ML model) and Niser. (DL model). Our

in-house recommender system has been re-architected into HiServ, which utilizes various data opti-

mization techniques such as data purging, operation fusion, and concurrent user management, as well

as hashmap, NumPy, and tensors operations. These methods result in low recommendation latency

and high throughput. HiServ recommends the next likely products for multiple customers by bundling

them in batches, reducing latency from 1.5 seconds to 65 milliseconds and enhancing throughput from

1 recommendation per second to 1500 recommendations per second.

References

[1] Priyanka Gupta, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, and Gautam Shroff.

Niser: Normalized item and session representations with graph neural networks.

09 2019.

[2] Richa Sharma and Rahul Singh.

Evolution of recommender systems from ancient times to modern era: A survey.

Indian Journal of Science and Technology, 9, 05 2016.

EuroMLsys 2023 Rome, Italy


